

BRIDGE

Demonstration Event

Brussels, November 26, 2011

BRIDGE Project Progress

Nektarios Chrysoulakis FORTH

Urban metabolism

- Urban metabolism considers a city as a system and distinguishes between energy and material flows.
- Metabolic" studies are usually top-down approaches that assess the inputs and outputs of food, water, energy, etc. from a city, or that compare the metabolic process of several cities.
- BRIDGE: Bottom-up approach based on quantitative estimates of urban metabolism components at local scale, considering the urban metabolism as the 3D exchange and transformation of energy and matter between a city and its environment.

Why BRIDGE?

- Recent advances in bio-physical sciences have led to new methods to estimate energy, water, carbon and pollutants fluxes.
- There is poor communication of this new knowledge to end-users, such as planners, architects, engineers and policy makers.
- BRIDGE responds to this challenge by providing the means to close the gap between bio-physical sciences and urban planners, and to illustrate the advantages of accounting for urban metabolism in urban planning.

 $Q^* + Q_F = Q_H + Q_E + \Delta Q_S$

 $p + F + I = E + \Delta W + \Delta r$

 $F_c + \Delta S = C + R_e - P$

The BRIDGE idea

- To define urban metabolism by means of energy, water, carbon and air pollution fluxes in local scale.
- To examine how the change of land use and resources use affects the above fluxes.
- To develop indicators to quantify their impacts.
- To develop a DSS based on these indicators.
- To use this DSS to evaluate urban planning alternatives in several case studies.
- To support sustainable planning strategies based on these evaluations.

The main components

The planning alternatives

Helsinki: Meri-Rastila

Alternative 1: Supplementing the existing blocks

Alternative 2: Rastilla Hill

Alternative 3: Coastal Rastilla

The Decision Making Methodology

U r b с

n

M

0

u

n a

u

t

Ρ

1

а

Un

Data collection in Case Studies

Cross cutting Time series of EO derived emissivity and albedo maps; DEMs.

Modelling Cascade

MM5/CAMx

Area: 4000 x 4000 m2 Mesh resolution: 100x100 m2 N. of buildings: 1500

N. of sources: 34

URBAIR

А с

с U

0

....

n n

а

M

S u

s

t

a

n a Un

Ρ

1

a

The BRIDGE DSS

...is developed as an add-on for ESRI ArcGIS to fully exploit geographical data capabilities

The BRIDGE DSS

Environmental	_	Land Use					
Air Quality	Energy	Vew urbanized areas					
Polutant Concentrations Weight Adjust	Cooling/heating	P Brownfields re-used					
Green House Gauses Weight Adjust	 Anthropogenic heat 	Consity of development					
	🔽 Bowen ratio	Land Use Indicators Weights					
Ambient Concentrations Weight Adjust	Percentage of energy from renewable sources	Mobility/Accessibility					
Population Exposure to air polution	Energy Indicators Weights	✓ Length of cycle-ways provided					
	Thermal Comfort	✓ Length of new roads provided					
Air Quality indicators Weights	✓ Thermal Comfort Index (CP)	✓ Use of public trasport					
	 Air Temperature 	Vumber of inhabitants with access to public transport					
Water Balance	✓ Number of days above threshold						
Vater Consumption	Thermal Comfort Indicators Weights	Social Inclusion					
✓ Evapotranspiration	Discretionary	 Number of inhabitants with access to services Number of inhabitants with access to social housing 					
Infiltration	Green Spaces Weight Adjust	Social Inclusion Indicators Weights					
	Materials (Volume of material	Human well-being					
Potential flood risk		Number of inhabitants affected by flash flooding Number of inhabitants affected by heat waves					
Water Balance Indicators Weights	Discretionary Indicators Weights	Humman well-being Indicators Weights					
Enviromental Indic	ators Weights	Social Indicators Weights					
Economic							
Cost of proposed development							
Fifects on local economy (employment)	Sustainabilty Dim	Sustainability Dimensions Weights OK					
Fifects on local economy (revenue)							
Economic Indicatots Weights							

Indicators are organized in a hierarchy to make it easier for the user to select and define their relative importance

The BRIDGE DSS

Socio-economic indicators values are not defined by the environmental models. These values are assigned by the user for all alternatives.

🛱. User Defined Scores					
Provide values filling the	Current Site	e: Athens	Alternative	Base	•
Materials Volumes of materials re-used (m^3) 7	28	Economic	: Viability	Base Alternative 1 Alternative 2 Alternative 3	
Land Use			Cost of proposed o	development (Euro	s) 100000
New urbanized areas (% of total) 20		Effect on local economy - employment (No of new)			
Brownfields re-used (% of total) 50		Eff	ect on local Econor	ny -revenue- (Euro	s) 500000
Density of development (% of total) 30					
		Social Inc	clusion		
Mobility / Accessibility		Number	of inhabitants with a	access to services	200
Quality of pedestrian	10	Number of i	nhabitants with acce	ess to social housi	ng 600
Length of cycle-ways provided 10	000				
Lenth of new roads provided 5	500	-Human w	ell-being		
Use of public transport (% of total population)	10	Number of i	nhabitants affected	by flash flooding	700
Number of inhabitants with access to public trasport	00	Number o	f inhabitants affecte	d by heat waves	800
Additional Indicator	0		Save	Cancel	ОК

The DSS Outputs - alternatives scores

Through the multi-criteria evaluation process...

a final appraisal score for each alternative is computed

u

s

t

а Un RID

P I

а n

a

n

Supp

с U

0

11 a n

GE

b 1 0

b

- and the sub-• scores computed are also presented as numbers
- and in the form of • a spider diagram

Apply cool materials on all buildings at Egaleo municipality and on roads Change the land use of Eleonas from brownfield to built area

Change the land use of Eleonas from brownfield area to green space

The DSS Outputs - Men NO_x Concentration

Athens. Mean NO_x concentrations (µg/m³) 07:00 - 10:00 LST in August. Alternatives' maps

present the difference from Base.

Alternative 1

Base

Alternative 2

Alternative 3

The DSS Outputs - Thermal Comfort

Athens.

Mean air temperature (K) 20:00 - 23:00 LST in **Summer**.

Alternatives' maps present the difference from Base.

Base

Alternative 1

Alternative 2

Alternative 3

Buildings for 500 inhabitants

Buildings for 1500 inhabitants

Buildings for 1800 inhabitants and 1000 new jobs

u

The DSS Outputs - CO₂ Flux

Helsinki.

Yearly cumulative CO_2 emissions (µg/m²). Alternatives' maps present the difference from Base.

Base

Alternative 1

Alternative 2

Alternative 3

u p p o r

The DSS Outputs - indicators maps

London Planning Alternatives:

Alternative 1: Add new street trees.

Alternative 2: Add green roofs with varying slopes.

u p p o r

Alternative 1: Implementation of both.

The DSS Outputs - Air Temperature

London.

Yearly mean evening (19:00 - 23:00 LST) air temperature (K). Alternatives' maps present the difference from Base.

Alternative 1

с

c U

0

....

M

GE

u

s

P I

a n U n

RID

o n

Support

Alternative 3

Complete reforestation of a green area and a sport arena in the Cascine Park. Increase of trees (deciduous) by about 75% of the total. Redevelopment of a former industrial area (FIAT) in the north of the Cascine Park, San Donato Park. Implementation of both.

The DSS Outputs - Surface Runnoff

Firenze.

Mean surface runoff (mm/h) for **Summer**. Alternatives' maps present the difference from Base.

Base

Alternative 1

Alternative 2

Alternative 3

u

1

u p p o r t

< -3.3 -3.3 - -3.06 -3.06 - -2.81 -2.81 - -2.56 -2.56 - -2.32 -2.32 - -2.07 -2.07 - -1.82 -1.82 - -1.58 -1.58 - -1.33 -1.33 - -1.09 -1.09 - -.84 -.84 - -.59 -.59 - -.35 -.35 - -.1 -.1 - .15 .15 - .39 .39 - .64 .64 - .88 .88 - 1.13 > 1.13

The DSS Outputs - indicators maps

S u s t

Support

Gliwice Planning Alternatives:

The DSS Outputs - PM_{10} Concentration

Gliwice. Yearly mean PM_{10} concentration (μ g/m³).

Alternatives' maps present the difference from Base.

Base

Alternative 1

Alternative 2

Alternative 3

u p p o r t

Strategic Scenarios

	Climate Change	Energy / Technological Development	Economy
1	+	+	+
2	-	+	+
3	+	_	_

Scenario 1

Scenario 2

25% of the FP10 will be used for climate change adaptation strategies

Scenario 3

u

s

t

n

Strategic Scenarios Analysis

S u

> P I a n U n

c c U

GE

Support

 PA I
 PA II
 PA III

 5 I
 1,00
 0,99
 0,98

 5 II
 1,00
 1,10
 1,12

 5 III
 1,00
 1,14
 1,15

Helsinki:

The role of users

A c U o r u b n a

n M

n

S u s t

a

i n

a U n

P I

a

n

Conclusions - Future Plans

BRIDGE evaluates how planning alternatives modify urban metabolism components and is able to promote sustainable planning strategies by enhancing planning processes through the quantitative assessments of environmental aspects on a pair with socio-economic considerations.

u p p o r

- If BRIDGE makes clear what information municipalities need to gather in order to assess environmental sustainability, it will have accomplished a major task.
- Future plans: towards to an operational tool based on BRIDGE DSS Prototype.

http://www.bridge-fp7.eu